23,326 research outputs found

    Phase Retrieval via Randomized Kaczmarz: Theoretical Guarantees

    Full text link
    We consider the problem of phase retrieval, i.e. that of solving systems of quadratic equations. A simple variant of the randomized Kaczmarz method was recently proposed for phase retrieval, and it was shown numerically to have a computational edge over state-of-the-art Wirtinger flow methods. In this paper, we provide the first theoretical guarantee for the convergence of the randomized Kaczmarz method for phase retrieval. We show that it is sufficient to have as many Gaussian measurements as the dimension, up to a constant factor. Along the way, we introduce a sufficient condition on measurement sets for which the randomized Kaczmarz method is guaranteed to work. We show that Gaussian sampling vectors satisfy this property with high probability; this is proved using a chaining argument coupled with bounds on VC dimension and metric entropy.Comment: Revised after comments from referee

    Polynomial Time and Sample Complexity for Non-Gaussian Component Analysis: Spectral Methods

    Full text link
    The problem of Non-Gaussian Component Analysis (NGCA) is about finding a maximal low-dimensional subspace EE in Rn\mathbb{R}^n so that data points projected onto EE follow a non-gaussian distribution. Although this is an appropriate model for some real world data analysis problems, there has been little progress on this problem over the last decade. In this paper, we attempt to address this state of affairs in two ways. First, we give a new characterization of standard gaussian distributions in high-dimensions, which lead to effective tests for non-gaussianness. Second, we propose a simple algorithm, \emph{Reweighted PCA}, as a method for solving the NGCA problem. We prove that for a general unknown non-gaussian distribution, this algorithm recovers at least one direction in EE, with sample and time complexity depending polynomially on the dimension of the ambient space. We conjecture that the algorithm actually recovers the entire EE

    Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval

    Get PDF
    In recent literature, a general two step procedure has been formulated for solving the problem of phase retrieval. First, a spectral technique is used to obtain a constant-error initial estimate, following which, the estimate is refined to arbitrary precision by first-order optimization of a non-convex loss function. Numerical experiments, however, seem to suggest that simply running the iterative schemes from a random initialization may also lead to convergence, albeit at the cost of slightly higher sample complexity. In this paper, we prove that, in fact, constant step size online stochastic gradient descent (SGD) converges from arbitrary initializations for the non-smooth, non-convex amplitude squared loss objective. In this setting, online SGD is also equivalent to the randomized Kaczmarz algorithm from numerical analysis. Our analysis can easily be generalized to other single index models. It also makes use of new ideas from stochastic process theory, including the notion of a summary state space, which we believe will be of use for the broader field of non-convex optimization

    An asymptotic preserving scheme for kinetic models with singular limit

    Full text link
    We propose a new class of asymptotic preserving schemes to solve kinetic equations with mono-kinetic singular limit. The main idea to deal with the singularity is to transform the equations by appropriate scalings in velocity. In particular, we study two biologically related kinetic systems. We derive the scaling factors and prove that the rescaled solution does not have a singular limit, under appropriate spatial non-oscillatory assumptions, which can be verified numerically by a newly developed asymptotic preserving scheme. We set up a few numerical experiments to demonstrate the accuracy, stability, efficiency and asymptotic preserving property of the schemes.Comment: 24 pages, 6 figure
    • …
    corecore